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Abstract—The paper proposes a variant of the Iterative Closest
Point (ICP) algorithm for point cloud registration that addresses
two main issues with existing ICP-based algorithms: the lack of
precise and complete color information and the lack of robustness
to noise and outliers. The proposed algorithm introduces a
color distance metric based on the L*a*b* color space and a
correntropy-based objective function to enhance the accuracy and
robustness of the algorithm. Simulation experiments on an RGB-
D object dataset show that the proposed algorithm outperforms
existing ICP-based methods in terms of accuracy and robustness.

Index Terms—Point Cloud Registration, ICP, L*a*b* Color
Space, Correntropy

I. INTRODUCTION

Point cloud registration is a transformation prediction prob-
lem to align two point clouds collected from the same object
or scene. Point cloud registration has been widely used in
many computer vision fields, such as 3D reconstruction, pose
estimation, and self-localisation and mapping (SLAM) [1].
With the development of 3D sensors such as LiDAR and RGB-
D cameras, point cloud registration has attracted more and
more attention and many research works have been proposed
in this field.

The Iterative Closest Point (ICP) [2] algorithm is one of
the most popular point cloud registration algorithms for rigid
body cloud registration. The basic idea of the ICP algorithm
can be divided into two steps. The first step is to find the cor-
responding point pairs between the two point clouds through
the closest point search. The second step is to solve the rigid
transformation between the two point clouds by minimizing
the objective function of point cloud alignment. The standard
ICP algorithm lacks support for color information in point
clouds, and is not robust enough to noise and outliers. To
enhance the ICP algorithm with robust assistance of color
information, many improved methods have been proposed
based on the standard ICP algorithm. For example, the Hue-
assisted ICP algorithm [3] introduces hue value in the HSV
color space to resolve the ambiguity problem and improve
computational efficiency.

However, the above ICP-based algorithm still has two prob-
lems as the following. First, the assistance of color information
is not precise and complete enough. Only the hue value in HSV
color space is integrated into the closest point search process,

which builds a gap between the registration result and the
human-friendly visual perception effect. Second, the algorithm
still lacks robustness to noise and outliers. Especially, the
introduction of color information also brings more noise,
which further reduces the robustness of the algorithm.

To address the above problems, we propose a variant of the
ICP algorithm that can combine human-friendly perception
of color information and robust performance with noisy data.
Specifically, the proposed method consists of improvements in
the following two aspects. The first aspect of the improvement
focuses on introducing more complete and human-friendly
color information. We propose a color distance metric based
on the L*a*b* color space, and integrate it into the closest
point search process to obtain more accurate corresponding
point pairs. The second aspect of the improvement focuses
on enhancing the robustness of the algorithm. We introduce
a correntropy-based objective function in the iterative opti-
mization process, and maximize the correntropy criterion to
reduce the influence of noise and outliers, thereby improving
the robustness of the algorithm.

In summary, the main contributions of this paper are three-
fold:

1) A variant of the ICP algorithm is proposed, which
introduces more complete and human-friendly color in-
formation and enhances the robustness of the algorithm.

2) The color distance metric in the L*a*b* color space is
proposed, which reflects more precise color information.
The correntropy-based objective function is introduced
to deal with outliers and noises in the registration
process.

3) Simulation experiments are conducted on the RGB-D
object dataset with various initial conditions. The results
show that the proposed algorithm outperforms existing
ICP-based methods in terms of accuracy and robustness.

II. RELATED WORK

ICP-based algorithms are a class of point cloud registration
algorithms that have been widely used in real applications.
They mainly achieve the registration of two rigid point
clouds through two steps: corresponding point pair search
and iterative optimization. Since the standard ICP algorithm
[2] was proposed, enormous research has been conducted to
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improve its accuracy, robustness and computational efficiency
[4]. According to the improvement of different steps, the
focus of current ICP-based methods can be divided into two
categories, i.e., the corresponding point search method and the
iterative optimization objective function.

Previous work on the corresponding point search method
mainly focuses on improving the matching strategy of cor-
responding points between point clouds, such as SparseICP
[5] and NICP [6]. The SparseICP algorithm matches only
a small number of representative key points in the point
cloud, which improves the computational efficiency of large-
scale point cloud registration and reduces the requirement for
dense point cloud sampling. The NICP algorithm introduces
normal information to constrain the correspondence between
point clouds, which can better utilize the non-uniform surface
features. It uses a Gaussian distribution model to represent
the error distribution between point clouds and improves the
robustness to noise and uncertainty.

Previous work on the iterative optimization objective func-
tion mainly focuses on improving the objective function in
the iterative calculation process, such as Point-to-Plane ICP
[7] and PLICP [8]. The Point-to-Plane ICP algorithm uses
the distance metric between point and plane to calculate the
optimization function between point clouds. Compared with
the traditional point-to-point error metric, it is closer to the
registration problem in the real physical world and has a
faster convergence speed when the point cloud contains more
plane structures. However, it also brings higher computational
complexity. The PLICP algorithm uses the distance metric
between point and line and uses the shortest vertical distance
from point to target line segment as the optimization function,
which achieves better accuracy and robustness in point cloud
registration problems containing line structures.

The proposed method focuses on improving both the corre-
sponding point search strategy and the iterative optimization
objective function. In terms of corresponding point search,
a color distance metric based on the L*a*b* color space is
proposed and integrated into the closest point search process
to obtain more accurate corresponding point pairs. In terms of
the objective function, a correntropy-based objective function
is introduced to reduce the influence of noise and outliers,
thereby improving the robustness of the algorithm.

III. PRELIMINARY

In this section, we give a formal definition of the point cloud
registration problem and take a brief review of the basic ICP
algorithm.

Given two point clouds, including the data point
cloud {x1,x2, · · · ,xn} and the model point cloud
{y1,y2, · · · ,ym}, the goal of point cloud registration is to
find an optimal transformation T, so that the transformed
data point cloud {T(x1),T(x2), · · · ,T(xn)} can be close to
the model point cloud {y1,y2, · · · ,ym}, thereby achieving
the fusion of these two point clouds.

In the standard ICP algorithm, it is assumed that the trans-
formation from the data point cloud to the model point cloud

is a rigid transformation T(x) = Rx + t, where R ∈ R3×3

is a rotation matrix and t ∈ R3 is a translation vector.
Generally, the initial R0 and t0 can be estimated according to
the spatial relationship between the point clouds. The standard
ICP algorithm iteratively performs the following two steps. For
the k-th (k ≥ 1) iteration, firstly, the closest point pair search
method is used to calculate the correspondence between the
data point cloud and the model point cloud. Specifically, for
each point in the data point cloud, its corresponding point is
calculated as the closest point in the target point cloud after
transformation:

ck(i) = argminj=1,··· ,m∥(Rk−1xi + tk−1)− yj∥22, (1)

Secondly, the Euclidean distance between the corresponding
point pairs of the data point cloud and the model point cloud
is minimized by the least squares method to calculate the
transformation parameters at this iteration:

Rk, tk = argminR,t

n∑
i=1

∥∥(Rxi + t)− yck(i)

∥∥2
2

(2)

These steps are repeated until the distance between the cor-
responding point pairs of the data point cloud and the model
point cloud converges to a predefined small value. Finally, the
rigid transformation can be solved to register the two point
clouds.

IV. OUR METHOD

A. Problem Statement

Color point cloud registration is the registration of
two point clouds with additional color information. In
the color point cloud, each point contains the coordi-
nates not only in the spatial space, but also in the
color space. Denote the colored data point cloud as
{(x1,p1), (x2,p2), · · · , (xn,pn)} and the colored model
point cloud as {(y1,q1), (y1,q2), · · · , (ym,qm)}, where
xi,yj are the spatial coordinates, and pi,qj are the color
coordinates.

There are mainly two challenges in color point cloud regis-
tration: the integration of color information and the influence
of noise and outliers. Firstly, the standard ICP algorithm only
uses the spatial coordinates of the point cloud to calculate
the corresponding point pairs, while ignoring the color infor-
mation. Secondly, the introduction of the color information
also brings more noise and outliers, which will further reduce
the robustness of the algorithm. These challenges make the
registration algorithm easily fall into local optima, which leads
to a failure of the standard ICP algorithm as shown in Fig. 1.

B. Method Overview

In this paper, we propose a variant of the ICP algorithm
to integrate human-friendly color information and the ro-
bustness of the algorithm. Specifically, the proposed method
consists of two steps. At the first step, the closest point
search process is guided by more complete and human-friendly
color information, where a color distance metric based on
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(b) ICP registration result(a) Groundtruth result

Fig. 1: The registration result of the standard ICP algorithm.

the L*a*b* color space is proposed and integrated to obtain
more accurate corresponding point pairs. At the second step,
a correntropy-based objective function is introduced in the
iterative optimization process, and maximizes the correntropy
criterion to reduce the influence of noise and outliers, thereby
enhancing the robustness of the algorithm.

C. Human-friendly Color Distance Metric

To introduce the color information into the point cloud
registration, we propose a human-friendly color distance in
the L*a*b* color space and enhance the closest point pair
search with a comprehensive distance metric including both
spatial and color differences.

To calculate the color difference between two points, the
color attributes of the colored point need to be mapped to
a suitable color space to calculate the Euclidean distance.
The color data captured by the camera is usually in the
form of 3 channels in the RGB color space. However, the
RGB color space is not perceptually uniform. Therefore, the
Euclidean distance in RGB space cannot well measure the
perceived color difference between point pairs [9]. In contrast,
the L*a*b* color space is a perceptually uniform color space,
where the uniform change in coordinates corresponds to the
uniform change in color perception [10]. The L*a*b* color
space can simulate the nonlinear response of the human eye
to color signals, and thus the Euclidean distance in this space
can better reflect the perceived color difference and guide the
registration algorithm to perform more accurate and human-
friendly correspondence between color point clouds.

Therefore, we choose to use the L*a*b* color space to
model the color information of the point cloud, and use the
colorful components a* and b* to represent the color vector
of each point in the point cloud pi,qj ∈ R2. Thus, the
color difference of point pair pi,qj can be calculated by the
Euclidean distance in the L*a*b* color space:

∆Eij =

√
∥pi − qj∥22 (3)

Considering the importance of color difference in point cloud
registration, we add the Euclidean distance in the L*a*b*

space to the closest point search process, and introduce a
weight parameter α to balance the spatial distance and the
color distance. The improved correspondence mapping is
calculated as follows:

ck(i) = argminj
{
∥(Rk−1xi + tk−1)− yj∥22 + α∆E2

ij

}
(4)

For α = 0, the proposed method degenerates to the standard
ICP algorithm. By introducing the color distance term ∆E,
the improved correspondence mapping explicitly guides the
algorithm to focus on the color information contained in the
color point cloud, thereby achieving more accurate and precise
registration results.

D. Correntropy-based Objective Function

To reduce the influence of noise and outliers on the registra-
tion results of color point clouds, we introduce a correntropy-
based objective function to improve the iterative optimization
process of the standard ICP algorithm and enhance its robust-
ness.

At the iterative optimization process, the standard objective
is to minimize the Euclidean distance between the correspond-
ing point pairs, i.e., to minimize the sum of L2 objective
function in Eq. (2). However, the noise and outliers in the point
cloud data usually cause abnormally large L2 errors, which
impose too much effect on the overall objective function and
may mislead the iterative optimization process. To reduce the
influence of noise and outliers on the optimization process,
we introduce a correntropy-based objective function, in which
the widespread Gaussian kernel is used as the kernel function.
The objective function is calculated as follows:

Rk, tk = argmaxR,t

n∑
i=1

exp(−w(i)) (5)

w(i) =

∥∥(Rxi + t)− yc(i)

∥∥2
2

2σ2
(6)

where σ is a hyperparameter to control the kernel width. The
correntropy-based objective function is calculated by the sum
of the negative exponential term exp(−w(i)). For those noise
and outlier points, although the distance w(i) may become
much larger, the negative exponential term exp(−w(i)) will be
close to zero, which reduces the influence of noise and outliers
on the optimization process. Therefore, the correntropy-based
objective function is enabled with more robustness to noise
and outliers than the standard L2 objective function.

V. EXPERIMENT

To verify the performance and robustness of the proposed
ICP algorithm, we design and conduct simulation experiments
on the public point cloud dataset.

A. Experiment Settings

1) Dataset: In the simulation study, we select the RGB-
D Object dataset [14] for evaluation. The RGB-D Object
dataset contains 51 categories of common household objects,
where both RGB images and depth images of each object are
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TABLE I: Error results on the coffee mug dataset in three different initial conditions. The best results are emphasized in bold.

Method
Rotation = 15◦ Rotation = 30◦ Rotation = 45◦

ER Et ER Et ER Et

ICP [2] 2.8105 1.4002 1.8168 0.8859 0.1597 0.0707

CICP [11], [12] 0.1719 0.0869 0.2815 0.1397 0.3359 0.1626

HCICP [13] 0.1716 0.0867 0.2784 0.1384 0.3286 0.1599

ICP + L*a*b* 0.0540 0.0077 0.0540 0.0076 0.0543 0.0077

Ours 0.0113 0.0049 0.0117 0.0049 0.0113 0.0049

Fig. 2: The initial of the model and data point cloud.

collected with a Kinect-like 3D camera at the resolution of
640×480. The collected RGB-D images are then transformed
into the color point cloud model by computing the 3D spatial
coordinates of each pixel from the depth data and camera
parameters. In the main experiments, the coffee mug from the
RGB-D Object dataset is selected as the model point cloud.

2) Initialization Settings and Baselines: For each object, in
order to simulate the scenario for point cloud registration, we
translate the original point cloud and rotate it along the axis by
different angles (15◦, 30◦, 45◦) to obtain the data point cloud.
One initial position of the model point cloud and the data point
cloud is shown in Fig. 2. The comparison baselines include
the standard ICP [2], CICP [11], [12], and HCICP [13].

3) Evaluation Metrics and Implementation Details: For
each algorithm and each object, the error between the solved
rigid body transformation parameters R̂, t̂ and the ground-
truth values R, t is calculated as:

ER =
∥∥∥R̂−R

∥∥∥
2
, Et =

∥∥t̂− t
∥∥
2

(7)

The algorithms are implemented using MATLAB and the
experiments are performed on PC with Intel Core CPU and
32G RAM.

B. Comparison with State-of-the-arts

We perform a comparison study of the proposed algorithm
and the baselines on the coffee mug dataset. The experimental

(a) Basic ICP algorithm (b) HCICP algorithm

(c) Our algorithm (d) Groundtruth

Fig. 3: The visualization of registration results.

results are presented in Table I. From the comparison results,
it is observed that:

(1) Compared with the baseline algorithms, the proposed
algorithm achieves superior performances on all three condi-
tions, with the improvement of 0.0228, 0.0225 and 0.0229
over the second-best results. This is mainly because the pro-
posed algorithm introduces L*a*b* color space and maximum
correntropy criterion. The introduction of L*a*b* color space
makes the color information between point clouds correspond
more accurately. The introduction of maximum correntropy
criterion reduces the influence of noise and outliers and makes
the optimization process more robust.

(2) Among the baseline algorithms, the standard ICP al-
gorithm has the highest registration error. This is because
it only uses spatial coordinate information and ignores color
information. The improvements in CICP and HCICP algorithm
can indeed reduce the registration error. This shows that
adding correntropy criterion can enhance the robustness of the
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TABLE II: Average Error±STD in the extensive study. The best results are emphasized in bold.

Method
Rotation = 15◦ Rotation = 30◦ Rotation = 45◦

ER Et ER Et ER Et

ICP [2] 0.8170±1.2344 0.3671±0.5620 0.8372±1.2251 0.3557±0.5279 0.6894±1.1354 0.2657±0.4488

CICP [11], [12] 0.1156±0.0714 0.0498±0.0332 0.1750±0.1292 0.0746±0.0600 0.2653±0.3266 0.1231±0.2035

HCICP [13] 0.0847±0.0742 0.0375±0.0332 0.1088±0.0975 0.0479±0.0447 0.1269±0.1404 0.0563±0.0656

Ours 0.0819±0.0707 0.0343±0.0294 0.0829±0.0714 0.0346±0.0294 0.0835±0.0728 0.0348±0.0301

registration result. Further introducing color information on
this basis can well guide the algorithm to perform point cloud
registration and reconstruction, but the distance measurement
in the color space is still insufficient.

C. Visualization

For an intuitive and interpretable analysis of the algorithm
performance, we visualize the registration results and the
ground-truth of the coffee mug model, as shown in Fig.
3. It is observed that the proposed algorithm achieves a
relatively more refined color point cloud registration effect.
Our algorithm not only restores the overall geometric result
and color pattern of the 3D point cloud model, but also
effectively reduces the point cloud missing problem in the
pattern. Contrastively, the standard ICP algorithm is unable to
effectively stitch the pattern of the mug, and the restoration
effect of the overall geometric structure is also poor. The
HCICP algorithm can basically restore the overall geometric
structure and color pattern of the mug model, but there are
still many missing points in the pattern.

D. Extensive Study on All Categories of Objects

To obtain a comprehensive evaluation analysis, we conduct
extensive experiments to cover all 51 categories of objects
from the RGB-D Object dataset. The mean and standard
deviation of registration errors over all objects are reported
for each algorithm. The experimental results are presented in
Table II. It is observed that our algorithm maintains robust
superiority over the baselines on different kinds of objects
from the entire dataset.

VI. CONCLUSION

In this paper, we propose a novel ICP algorithm for color
point cloud registration. In the proposed algorithm, human-
friendly color information is used to guide the point cloud
registration, and the correntropy-based objective function is
introduced to reduce the influence of noise and outliers. The
proposed algorithm is evaluated on the RGB-D Object Dataset
and the experimental results show that the proposed algorithm
achieves the best registration result. In the future, we will
further improve the proposed algorithm and apply it to more
practical applications.
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